Supplement of Biogeosciences, 21, 4251–4272, 2024 https://doi.org/10.5194/bg-21-4251-2024-supplement © Author(s) 2024. CC BY 4.0 License.

Supplement of

How is particulate organic carbon transported through the river-fed submarine Congo Canyon to the deep sea?

Sophie Hage et al.

Correspondence to: Sophie Hage (sophie.hage@hotmail.com)

The copyright of individual parts of the supplement might differ from the article licence.

Supplementary Material

Hage et al. (2024, Biogeosciences): How is particulate organic carbon transported through the river-fed Congo Submarine Canyon to the deep-sea?

Figure S1. X-ray photograph of the sediment trap cut in half and data collected using a Multi-Sensor-Core-Logger on the sediment trap

Figure S2: Velocity along canyon (V_{along}) and frequency analysis for the period 15th to 25th October 2019 (see Fig. 2A in the main manuscript for context). A. Time series of V_{along} between 15th October and 25th October 2019. The brown and black horizontal lines indicate the locations of the arrays displayed in B. B. V_{along} speeds at 5 and 30 m above canyon floor.

Figure S3: Velocity along canyon (V_{along}) and frequency analysis for the period 14th to 22nd November 2019 (see Fig. 2A in the main manuscript for context). A. Time series of V_{along} between 14th and 22nd November 2019. The brown and black horizontal lines indicate the locations of the arrays displayed in B. B. V_{along} speeds at 5 and 30 m above canyon floor.